Morphometric Analysis of Hard Palate on Nepalese Population

*Sushma Khatiwada, 1 Rajib Chaulagain, 2 Gulam Anwer Khan, 3 Srijana Mishra Sapkota, 4 Budhi Nath Adhikari Sudhin 5

1Lecturer, Department of Anatomy, Chitwan Medical College, Bharatpur-10, Chitwan, Nepal
2Lecturer, Department of Oral Pathology, Chitwan Medical College, Bharatpur-10, Chitwan, Nepal
3Associate Professor, Department of Anatomy, Chitwan Medical College, Bharatpur-10, Nepal
4Lecturer, Department of Prosthodontics, Chitwan Medical College, Bharatpur-10, Nepal
5Registrar, B P Koirala Memorial Cancer Hospital, Bharatpur-7, Chitwan, Nepal

* Corresponding Author: Dr Sushma Khatiwada; Email: khatiwadasushz@gmail.com

ABSTRACT

Background: The hard palate is an important part of the human skull located between the nasal and the oral cavity. Hard palate plays an important role in the production of speech. The present study aimed to measure the morphometry of the hard palate and explore the existence of gender related differences since limited similar studies has been carried out.

Methods: This study was conducted to assess the palatal dimensions in a sample of Nepalese individuals aged 18–25 years with class I molar occlusion. The data collection was done from January 2020 to March 2020. The length, breadth and height of the hard palate were measured and palate indices as well as palatal height indices were calculated. Differences between males and females were tested for the palatal variables.

Results: Mean palatal length, breadth and width were 41.58 ± 3.48 mm, 40.63 ± 3.76 mm, and 14.9 ± 2.04 mm respectively. We found significant gender difference in palatal morphometry in the cast we analyzed. The palatine index of majority of dental cast was of brachystaphyline type (84.85%). Calculation of the palatine height index demonstrated predominance of orthostaphyline type (71.21%) of dental casts.

Conclusion: The present study provides important palatal morphological data of the Nepalese population which can be helpful for orthodontic treatment as well as for anthropological studies, greater palatine nerve blocks and surgical procedures on the hard palate.

Keywords: Hard palate, Morphometric analysis, Palatal dimension, Palatine height index, Palatine index.
INTRODUCTION

The bony palate is formed by the palatine processes of the maxillae anteriorly and the horizontal plates of the palatine bones posteriorly which are linked by a cruciform system of sutures. 1 Hard palate starts to develop from the palatine shelves from both sides and fuse in the midline around sixth week of intrauterine life. 2

The palate plays a major role in the passive articulation of speech. 3 Accurate assessment of the hard palate has many clinical applications, notably in the fields of forensic anthropology, orthodontic surgeries, palatal implants, repair of cleft palate and treatment of obstructive sleep apnea syndrome. 4-6

Palatal measurement varies among individuals according to pattern of craniofacial growth and by several genetic and environmental factors. Prolonged mouth breathers and individuals with enlarged tonsils or nasal allergies have altered palatal dimensions as well.7 Gender differences between individual palatal measurements have been documented by several investigators, 7-10 while some could not find significant differences. 11,12

Studies on the morphometry of the palate has been scarcely carried out in Nepal and clinician have to largely depend on western data or data from our neighboring countries for normal values which may not be always accurate. 13,14 This study aimed at investigating the morphology of the hard palate in Nepalese population for generating normative values regarding its length, width and depth and to identify any gender differences between them.

MATERIALS AND METHODS

This was a descriptive observational study approved by the Institutional Review Committee of Chitwan Medical College (CMC-IRC/076/077-120). The study was carried out from January 2020 to March 2020 at Prosthodontics lab of Chitwan Medical College. Sample was estimated based on simple random sampling technique with two means by using the following formula:

\[n = \frac{2(Z_\alpha + Z_\beta)^2 \sigma^2}{\Delta^2} \]

The following values were used for the calculation -

Difference between two means (length) in a similar study (Mustafa et al 10): \(\Delta = 43-39 = 4 \)

Population standard deviation of two groups combined: \(\sigma = 5 \)

Confidence level: 95% \(Z_\alpha = 1.96 \)

Power of test: 90% \(Z_{1-\beta} = 1.28 \)

Thus, a total sample size of 66 was obtained. Sixty six cast from patients and students were involved in the study. Cases with the following features were included in our study: Fully dentate with the exception of third molars, Class I molar occlusion, not having significant respiratory and allergy history and no previous orthodontic treatment or orthognathic surgery. Dental casts with severe malocclusion or crowding anteriors were excluded from our study.

Data collection was done by the principal investigator and a co-investigator together. Principal investigator was involved in taking the measurements and the co-author noted the measurements and clicked the photographs. A 150 mm digital vernier caliper (accurate up to 0.01 mm, product of China) was used to perform all the measurements. Each of the cast was given a serial number by
which the details of the subjects were easily found out from the project files whenever needed. Detailed procedure of measurement is in the text below.

Length of the palate - The length of the palate was measured as a distance from the orale (point at the anterior end between the two maxillary central incisors) to the midpoint of the line joining the posterior surface of second molars.

Width of palate - The width was measured as the distance between the inner borders of the second molars.

Height of palate - Stainless steel wire corresponding with the transverse length at the level of canine, 1st premolar and 1st molar were cut and secured at the edges with wax. The height was measured at the highest point of the palatal vault at first molar. The final height of the palate was calculated after deducting the diameter of the stainless steel wire (0.5 mm) from the reading on the caliper.

Palatine index: The Palatine index (PI) was calculated by the formula given by Hassanali and Mwaniki.

\[PI = \frac{\text{Palatine width}}{\text{Palatine length}} \times 100. \]

The PI is the ratio of the palatine width to the palatine length expressed as a percentage.

1. PI if less than 79, the palate is narrow (Leptostaphyline)
2. PI if 80-84.9, the hard palate is intermediate (Mesostaphyline)
3. PI if 85 or more, the hard palate is broad (Brachystaphyline)

Palatine height index: was calculated by using the formula:

\[\text{Palatine height/Palatine breadth} \times 100 \]

According to the palatine height index there are 3 types of hard palate.
Chamestaphyline (low) - palatine height index < 27.9%.
Orthostaphyline (intermediate) - palatine height index between 28.0 - 39.9%.
Hypsistaphyline (deep) - palatine height index > 40%.

Data Analysis
All the data were numerically coded in excel and then transferred to Statistical Analysis System (SAS) university edition software. The mean, standard deviation and range was calculated and described to see patterns and behavior of the variables were measured. For inferential analysis, student t-test was applied to determine the difference between the means of male and female with respect to length, width and height respectively.

RESULTS
This study included a total of 27 male and 39 female maxillary casts. Table 1 depicts the mean palatal dimensions (length, width, and height) along with standard deviation for each gender in the study sample. Those parameters were compared between males and females using students’ t-test which was found to be statistically significant (p<0.05).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Male Mean ± SD (mm)</th>
<th>Female Mean ± SD (mm)</th>
<th>Total Mean ± SD (mm)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>39.49 ± 3.10</td>
<td>43.02 ± 2.98</td>
<td>41.58 ± 3.48</td>
<td><0.0001</td>
</tr>
<tr>
<td>Width</td>
<td>42.52 ± 3.72</td>
<td>39.32 ± 3.28</td>
<td>40.63 ± 3.76</td>
<td><0.0001</td>
</tr>
<tr>
<td>Height</td>
<td>16.70 ± 1.26</td>
<td>13.65 ± 1.50</td>
<td>14.90 ± 2.04</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Palatine index and palatine height index of our study population are shown in Figure 5 and 6 respectively.

DISCUSSION
Apart from gender, race and ethnicity of the study population, measurement of the palatal dimensions varies according to the method and landmarks chosen. This study is one of the few morphometric analysis study to investigate the hard palate in Nepalese population with class 1 occlusion.

The mean palatal length in our study was found out to be 41.58 ± 3.48 mm. Mustafa et al in 150 dental casts of adult males and females found it to be 43.91 ± 2.65 and 39.53 ± 2.73 mm respectively and reported that all the measurements had significant gender differences.\(^\text{10}\)
Unlike our study, Al-Zubair et al took a line connecting the 1st molars as the posterior limit of palatine length and found its mean as 30.05 ± 2.03 mm. Interestingly, like our study, they also found that females had longer palates as compared to males. 7

Nahidh et al by taking a point intersecting the mid-sagittal plane with a line passing over the widest point of the incisive papilla as the anterior limit and a line joining most distal point of 1st molars as the posterior limit, found the mean palatal length as 28.97 ± 1.55 mm with no gender differences. 16 Ahmed et al calculated the mean value of palatal length for different types of palates in both gender and found no significant differences for any type of palate. 17

Unlike the previous studies on dental casts, various other studies on palatal morphology have used dry human skulls. Sarilita et al measured the palatal length from the orale to the posterior nasal spine of dried skull and found the mean as 52.2 ± 3.2 mm (range 42.7 - 59.6 mm). 18 Other studies by Klosek et al, Shalaby et al, Jaffar et al, Dave et al and Jotania et al have found the mean palatal length as 51.4 ± 5.8 mm, 51.65 ± 4.7 mm, 5.082 ± 0.359 cm (range 4.33 - 5.7 cm), 43.54 ± 0.28 mm and 49.74 mm respectively. 11,12,19-21

Tomaszewska et al in their systematic review and metaanalysis included studies involving dry skulls as well as CT images and found palatal length in the range of 47.0 to 52.4 mm. 22 All of these variations in palatal length may be due to number of sample size taken, geographical or ethnic differences. We found the mean palatal width in our population to be 40.63 ± 3.76 mm. Mustafa et al in a similarly performed study found it to be 45.05 ± 2.47 mm and 40.23 ± 2.01 mm in 66 males and 84 females. 10 Similarly, Annapurna et al found average palatal width as 3.82 ± 0.32 cm in normal palate of 60 patients attending a government hospital in India. 23

Width of the palate at the level of 1st permanent molars was found to be 41.7 ± 2.8 mm by Al-Zubair et al, 35.06 ± 3.51 mm by Nahidh et al and 37.09 ± 3.3 mm by Alshahrani et al. 7,16,24 Ahmed et al found significant gender differences in palatal width at the level of 1st molar for all but leptoprosopic facial form. 17 Sexual differences in width was also noted by Al-Zubair et al, Mustafa et al and Ahmed et al. 7,10,17

Sarilita et al 18 measured the mean palatal width in human skull and found its mean as 37.97 ± 3.32 mm (range 30.1 – 47.9 mm) while Klosek et al, Hassanali et al, Jaffar et al, Dave et al and Jotania et al found it as 31.1 ± 5.2 mm, 4.02 ± 0.30 cm, 3.929 ± 0.341 cm, 33.83 ± 0.2 mm and 37.75 mm respectively. 11,15,19-21 Tomaszewska et al found mean palatal width as 46.9 ± 3.3 mm in their metaanalysis of European studies involving 1350 skulls. 22 Klosek et al noted no gender difference in palatal width as well as height. 11

Palatal height was the dimension least studied amongst all the three measurements. We found it as 14.90 ± 2.05 mm in our study. Annapurna et al measured it at different planes and found deepest value of 1.77 ± 0.15 cm at the level of 2nd permanent premolars. 23 Alshahrani et al measured the mean palatal height of the casts with class I malocclusion as 20.76 ± 3.1 mm. 24 Alkadhi et al noted mean palatal height in males and females as 20.90 ±
2.08 and 20.54 ± 2.09 mm respectively. 25 Nahidh et al measured the mean palatal height in dental casts with type 1 malocclusion and found it to be 14.9 ± 1.78 mm. 16 Zarringhalam et al combined different methods for palatometry including direct observation, cephalometry and dental cast analysis and found no gender differences in palatal height. 26 Using dried human skulls, Sarilita et al 18 found the mean height as 11.54 ± 2.4 mm (range 6 – 17 mm) while Klosek et al, Hassanali et al, Dave et al and Tomaszewska et al found it as 17.7 ± 4.2 mm, 1.22 ± 0.16 cm, 9.87 ± 0.23 mm and 13.1 ± 2.7 mm respectively. 11,15,20,22

Berwig et al had given a wide range of reference data on palatal dimensions of different countries in their metaanalysis of 18 studies from across the globe in 2018. 27 They found five studies with significant difference between males and females palatal length, while four others had no differences. In two studies, they noted that males had longer palates, while two studies showed no gender differences. A Mongolian study showed that females had longer palates as compared to males. They noticed no gender difference in depth in the single study that analyzed the depth of the palate.

Anil et al found statistically significant gender differences in palatal length and breadth but not height in their study of 86 dried unsexed Indian skulls. 8 Al-Zubair et al noticed that male seemed to have greater (mean value ± SD) palatal width and depth (width 41.7 ± 2.8 mm and depth 21.2 ± 1.5 mm) as compared to females (width 39.1 ± 2.3 mm and depth 20.7 ± 1.4 mm). 7

Palatine index calculation utilizes length and width of the palate which in turn are derived from various studies utilizing various landmarks and references. Most of the data on palatine index in the literature are derived from studies on dry skull and thus, comparison would not make much sense. Classification of types, however, may be used for descriptive purposes. Palatine index of our study along with others are depicted below in Table 2. The knowledge of palatine index is important because high and narrow palate has been reportedly associated with many syndromes such as Apert syndrome, Turner’s syndrome, Marfan syndrome and Franceschetti-Teacher-Collins syndrome. 8 Palatal height index of our study as well as other similar studies is shown in Table 3.

Table 2: Palatine index (PI)

<table>
<thead>
<tr>
<th>Study</th>
<th>Mean Palatine Index (± SD)</th>
<th>Narrow PI (<79.9) %</th>
<th>Intermediate PI (80 – 84.9) %</th>
<th>Wide PI (>85) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassanali et al 15</td>
<td>82.01 ± 7.84</td>
<td>43.2</td>
<td>23.7</td>
<td>33.1</td>
</tr>
<tr>
<td>D’Souza et al 4</td>
<td>-</td>
<td>37.5</td>
<td>22.5</td>
<td>40</td>
</tr>
<tr>
<td>Dave et al 20</td>
<td>77.97 ± 7.02</td>
<td>63</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Jotania et al 21</td>
<td>-</td>
<td>70</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Ortug et al 28</td>
<td>83.37 ± 10.90</td>
<td>38.3</td>
<td>24.4</td>
<td>37.5</td>
</tr>
<tr>
<td>Present study</td>
<td>98.73 ± 14.72</td>
<td>10.61</td>
<td>4.55</td>
<td>84.85</td>
</tr>
</tbody>
</table>
Table 3: Palatine height index

<table>
<thead>
<tr>
<th>Study</th>
<th>Mean Palatine Height Index (± SD)</th>
<th>Chamestaphyline < 27.9</th>
<th>Orthostaphyline 28-39.9</th>
<th>Hypsistaphyline > 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassanali et al 15</td>
<td>30.30 ± 6.30</td>
<td>40.0</td>
<td>56.67</td>
<td>3.33</td>
</tr>
<tr>
<td>D’Souza et al 4</td>
<td>29.23 ± 2.54</td>
<td>42</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>D’Souza et al 4</td>
<td>29.23 ± 2.54</td>
<td>42</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>Dave et al 20</td>
<td>30.5 ± 6.43</td>
<td>32</td>
<td>59</td>
<td>10</td>
</tr>
<tr>
<td>Shalaby et al 12</td>
<td>46.03 ± 1.33 (Male), 34.66 ± 2.05 (Female)</td>
<td>40.69</td>
<td>44.18</td>
<td>15.11</td>
</tr>
<tr>
<td>Anil et al 8</td>
<td>41.98 ± 9.82</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Annapurna et al 23</td>
<td>36.82 ± 5.03</td>
<td>4.55</td>
<td>71.21</td>
<td>24.2</td>
</tr>
</tbody>
</table>

Anil et al and Shalaby et al noted that palatal height index had significant gender differences. 8,12 Females have smaller bony ridge and alveolar process; average weakness of musculature combined with earlier growth of arch as compared to males may explain lower palatal dimensions in females, especially in the transverse and vertical dimensions.

Limitation of the study
This was a hospital based study having adults of narrow age group and with Class I molar occlusion only. This may have introduced some bias in the study.

CONCLUSION
Anatomical and morphometric knowledge of the hard palate is advantageous in various fields of medical science. The current study provides important morphometric data of Nepalese hard palate which may be valuable to provide anthropological references and help clinicians working in the vicinity of the palate.

Acknowledgment: The authors would like to thank Dr Smriti Narayan Thakur, Department of Prosthodontics, Chitwan Medical College; and Mr Naresh Khatiwada for his help in statistical analysis of the raw data.

REFERENCE

https://doi.org/10.4067/S0717-950220190002000744

https://doi.org/10.1155/2018/2190250

https://doi.org/10.1590/2317-1782/20182017216

https://doi.org/10.5603/FM.a2018.0088